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For a restricted class of problems a mathematical model of microscopic 
degradation processes, statistical kinetics, is developed and linked through 
acceleration transforms to the information which can be obtained from a system 
in which the only observable sign of degradation is sudden and catastrophic 
failure. The acceleration transforms were developed in accelerated life testing 
applications as a tool for extrapolating from the observable results of an 
accelerated life test to the dynamics of the underlying degradation processes. A 
particular concern of a physicist attempting to interpreted the results of an 
analysis based on acceleration transforms is determining the physical species 
involved in the degradation process. These species may be (a) relatively abun- 
dant or (b) relatively rare. The main results of this paper are a theorem showing 
that for an important subclass of statistical kinetic models, acceleration trans- 
forms cannot be used to distinguish between cases a and b, and an example 
showing that in some cases falling outside the restrictions of the theorem, cases 
a and b can be distinguished by their acceleration transforms. 

KEY WORDS:  Accelerated life test; acceleration transforms; degradation 
processes; statistical kinetics. 

1. I N T R O D U C T I O N  

The models proposed and discussed in this paper apply to phenomena 
more familiar to an industrial or a biological setting than to a physics 
laboratory. The phenomenon of concern is the degradation of complex 
material systems such as printed wiring boards, integrated circuits, rats, or 
ecosystems. The purpose of this paper is to discuss a class of mathematical 
models that can be used to model observables associated with the 
degradation of such systems. The focus of this paper will be on building 
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models of the relatively microscopic phenomena leading to failures in a 
system, when all that can be observed are the stresses the system is subject 
to and the times when individual systems (units) suddenly and 
catastrophically collapse. The models of the "relatively" microscopic 
processes we call statistical kinetic models, and the models we derive from 
them to describe the observable data are called acceleration transforms. (~ 
The reason for constructing two tiers of models, leading from microscopic 
phenomena to observable data and back, is that the models constructed 
from the observable degradation phenomena are used to extrapolate to 
conditions where no data have been taken. In order to minimize the 
Malthusian nature of such extrapolations, our philosophy is to always try 
to deduce a theory of the degradation phenomena being considered rather 
than just fit a curve to observed degradation data. Such a theory requires 
that the measurable phenomena provide information about the 
microscopic processes causing the degradation. Acceleration transforms 
provide us with a tool to deduce the necessary microscopic information 
from the macroscopic measurements. 

Acceleration transforms are models of failure time data which meet 
two criteria: 

1. The models reflect the processes giving rise to failure. 

2. The models reflect the fact that the initial conditions vary between 
individual units and are unknown because of the expense it would 
take to gather the information. 

Originally (1) these models were developed assuming that all relevant 
degradation processes could be described by systems of deterministic dif- 
ferential equations. The randomness of the models was due entirely to the 
variations in initial conditions between experimental units. Using simulated 
data, it was found that data analysis methods based on acceleration trans- 
forms could be used to differentiate among processes dominated by a single 
step, competing processes, and sequential processes. However, when we 
applied the model to experimental data generated in accelerated life tests, it 
became apparent that interpreting our models deterministically might be 
inappropriate, and that it was important to understand what the effect on 
the models would be if we assumed that the processes were very slow, 
governed by stochastic transition of a small number, say 102-109, of 
molecules or perhaps objects larger than molecules. We consider this the 
domain of statistical kinetics. 

A very restricted form of a statistical kinetic model is developed in Sec- 
tion 2, and four examples of processes are given. In Section 3 it is argued 
that for a restricted class of statistical kinetic models the derived 
acceleration transforms are identical to acceleration transforms derived 
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from corresponding deterministic models. Section 3 concludes by describing 
the acceleration transforms for the four previously developed examples of 
statistical kinetic processes. In particular, the fourth example demonstrates 
that the identity described above does not hold in general. The final section 
contains a discussion of scientific and data analytic problems, some solved 
and some unsolved, associated with the application of the framework 
provided by acceleration transforms and statistical kinetic models to the 
analysis of industrial accelerated life test data. 

2. S T A T I S T I C A L  K I N E T I C  M O D E L S  

Our model of degradation is based on the assumption that in any 
physical system, degradation can be described as a two-step process: 
(1) Microscopic flaws are generated through random accidents; 
(2) Subsequent changes in the state of the collection of microscopic flaws 
result in changes in the macroscopic behavior of the system. 

For the purpose of this paper statistical kinetics is concerned with the 
second step, assuming a particular distribution of flaws to start with. For 
example, we may begin with a crystal containing a collection of impurities 
and dislocations. The dislocations move freely until they are trapped. As 
more dislocations accumulate, a microcrack is formed, which quickly 
extends to a crack. As another example, consider the region between two 
oppositely biased, copper-plated through-holes in an epoxy glass printed 
wiring board. The flaws in this case may be molecules of halogenic acids 
left over from manufacturing processes. With sufficient humidity the 
halogenic ions may participate in chemical reactions, which cause the for- 
mation of conductive filaments reaching from the anode to the cathode. (1> 

Given the two examples, we see that even though we are leaving out 
step 1, the formulation described in this paper still has to cover a broad 
range of phenomena. The first example requires not only that the state of 
the flaws be tracked, but also that the distribution of energy throughout 
the crystal be tracked. The second example requires the generality to 
describe both chemical and electrochemical reactions. 

Actually, our goal in this paper is much more modest than a full 
elucidation of statistical kinetics. The mathematics developed in this paper 
is meant to deal with a collection of physical systems, indexed by ~o E f2, 
where the systems degrade in the same manner and where each system 
satisfies the following postulates: 

P1. At time t, system o) may be completely described (with respect to 
variables affecting the degradation process) by the pair (Do~(t), s(t)), where 
the vector Do,(t) is the vector describing the state of each flaw in the system 
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and s(t) is the stress (e.g., energy fields, material environment, etc.) to 
which the system is subject at time t. The restrictive part of this assumption 
is that we are assuming that except for the flaws, the physical system we are 
discussing immediately equilibrates with its surrounding environment. 

P2. The degradation process is described by a set of states A~ and 
transition intensities k~j such that given D~(t) and s(t), for each pair of 
states (A~, A j) there exist a nonnegative constant k~j(D~(t), s(t)) such that 
for any flaw 6 in state A i 

lim IP (6eA j ' t+Al6eA i : t ! ]=ko(D~( t ) , s ( t ) )  (1) 
zf~O A 

Here P(6 E A~: t + A]6 E Ai: t) is read "the probability that flaw 6 is in state 
Aj at time t + A conditionally given that ~5 is in state A i at time t." The 
dependence of ko. , the transition intensity between state i and state j, in 
Eq. (1) on D~(t) and s(t) implicitly allows for phenomena such as occur in 
the crystal example, where the change in state of any flaw changes the 
stress field in the crystal, thus changing the probability of transitions by 
other flaws. For notational convenience we will stop denoting the depen- 
dence of k• on s(t) for the rest of this section. 

P3. The function s(t) is nonrandom and D~(t) is Markov, given the 
function s(t). 

P4. The directed graph describing the allowable transitions for 
individual flaws has no cycles, and hence transitions are irreversible. This 
postulate can be defended on physical grounds as a good approximation 
for many, but not all, degradation processes. In many cases degradation is 
either being driven by external energy sources or is associated with a 
macroscopic increase in entropy (e.g., diffusion-driven processes). By defin- 
ing the set of states that flaws can occupy grossly enough, the processes will 
be essentially irreversible. For example, a dislocation may be defined either 
as free or tangled, rather then being defined more finely by its position. 
This gross definition of states can lead one to question the accuracy of 
Postulate P2. We will use P2 because we assume that it provides a 
reasonable approximation to the truth, and it is relatively easy to handle. 

Note that P4 implies that if there is only a finite number of states, at 
least one must be an absorbing state, a state from which no other state is 
accessible. We specify that one of these absorbing states is special, in that it 
causes failure. We denote this special state by M, and, anticipating the 
development in the next section, we say that for each experimental unit co 
there exists a threshold ( M ) ~  so that when the number or flaws in state M 
reaches ~M)o~, the unit fails. 
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In our discussion of statistical kinetics, it is more convenient to use a 
form of stochastic differential equation than to use equations of the form 
given by Eq. (1). To see in a simple case how this form may be derived 
from (1), suppose that i =  1, j =  2, and that A1 and A 2 are the only states in 
which flaws may occur. By the definition of conditional probability, (1) can 
be written as 

lira [ e(~ EA2: t-'~- z~)- r((~EA2:t).l=kl2(D(o(t))p(~)~Al:t ) 
A~O m 

or more succinctly 

(d/dt) P(6 e A2: t) = k12(D~(t)) P(6 e A 1 : t) (2) 

In interpreting the above, recall that each probability statement is con- 
ditioned on Do~(t). If we use (As) ( t )  to denote the expected number, again 
conditioned on Do~(t), at time t (or some fixed scalar multiple of a number 
such as concentration) of flaws in state A s at time t, (2) is equivalent to 

(d/dt)( A~ )(t) = k12(Do>(t) )( A2)(t)  (3) 

Those familiar with chemistry will note that Eq. (3) looks like a differential 
equation drawn from a system describing a first-order chemical reaction. 
This is no accident, since the deviation given above is a simplification of 
the derivation used to develop the so-called "master equation" (see ref. 3 
and references therein), which can be used to tie together the stochastic 
behavior of individual molecules and chemical kinetics. 

Before proceeding to some particular examples to show how particular 
models of the form given in (3) may be applied, we discuss some results 
concerning the structure of a simplified class of models. 

We define a statistical kinetic model to be simple if all of the transition 
intensities are functionally independent of D~(t). The mathematics we 
derive from this point on is derived by conditioning only on Do~(0) uriless 
specifically stated otherwise (i.e., example4). This actually is quite 
reasonable for the class of simple statistical kinetic models, since the expec- 
ted probabilities are equal to the limiting frequencies in that class. The 
importance of this point has to do with the fact that the acceleration trans- 
forms associated with these models are identical whether the unit-to-unit 
variability is due only to differences in initial conditions or due to both a 
difference in initial conditions and stochastic transitions (see Theorem 1). 
This identity is not necessarily true for other statistical kinetic models. An 
example of a model for which this is not true is given as example 4. 

The following facts may be derived from postulates P1-P4 and our 
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definition of simple statistical kinetic models. These facts will be useful in 
proving later results. 

Fact I. Begin by noting that P4 and the definition of simple 
statistical kinetic models implies that the finite set of states A l,..., Am can be 
relabeled so that A m = M ,  and that given any i, only states Aj with j <  i can 
access Ai. The proof that this reordering can be accomplished follows easily 
by induction. That the result is true for three states follows by exhausting 
all cases. Assume that the reordering can be done for any ( m - 1 ) - s t a t e  
system satisfying the postulates and consider an m-state system. By P4 and 
the fact that the system is finite, there exists a state, which we will call A0, 
such that Ao is not accessible from any other state. By the induction 
hypothesis, the other ( m - 1 )  states may be relabeled as A~ . . . . .  A(m_l) , so 
that they satisfy the condition of the first sentences. Relabeling A~ as Ai+ 1 
proves that the reordering can always be accomplished. It is then possible 
(through this relabeling of states) to write the system of differential 
equations corresponding to a simple statistical kinetic model with states 
A 1 , . . .  , A m as a triangular system of differential equations of the form 

(d /d t ) (A i~( t )  = kl~(A 1 ) ( t )  + . . .  + ki_ ~,i(A~_~ ) ( t )  -- ki~(A~)(t)  

To see this, note that by summing equations of form (1) over all states 
accessing A i and summing the appropriate modification of (1) over all 
states accessible from Ai and then applying the definition of conditional 
probability, we see that 

l i m I P ( 6 ~ A i : t + A ) - P ( 6 ~ A i : t ! ]  
A ~ o  A 

Defining k i i=~ j> /k i j ,  taking the limit, and summing over the set of all 
flaws in unit co gives the result. 

Until this point, we have not denoted the dependence of all of these 
probabilities or expected numbers of units on the particular realization of 
the material system. As we proceed this will become more important, so we 
add the following conventions to our notation. We will use B: t, co to 
denote that the event B holds at time t in unit co, and we use (A)o~(t) and 
{A )~(t) to denote, respectively, the expected number of flaws in state A at 
time t in unit co and the actual number of flaws in state A at time t. 

The next elementary fact allows us to derive a partial description of 
the distribution of time to failure. 
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Fact 2. For simple statistical kinetic models, if no two nonzero kii 
are identical, the solution to the system of differential equations takes the 
form 

i 

( A , ) o ( t ) =  ~ aj ioexp( -k~j t )  (4) 
j - - I  

i = l  j = l  

where we assume ( M ) ~ ( 0 ) =  0, and where the aji are rational functions of 
the (A~)o(0) and the k,j. This fact follows immediately from Fact 1 and 
our definitions. 

Define no~ as the number of flaws that may potentially reach state M. 
From Fact 2, the independence of the flaws implied by the Markov 
property of the system, and the fact that the kij are independent of Do(t  ), 
we see that the probability that any randomly selected flaw ~ is in state M 
at time t in unit co is 

( M ) ~ ( t )  
P(6 e M: t, co) = 

H a  

= ( A i ) o ( 0 ) -  aji~ exp(-k j j t )  ng 1 (5) 
i i j = l  

By the independence noted above, and recalling the definition of (M)o~, 
we see that the probability of failure in unit co by time t may be written 

P(~ e M: t, co ) i [1 -  P(6 e M: t, co) ] "~-'  (6) 
i=  < M )c ~ 

From (5) and (6) we see that the observable failure distribution is a 
function of the system of differential equations particular to the simple 
statistical kinetic model (which we denote by E) and the distribution over 
f2 (the population of co's) of the triple (no~, (M)o~, Do(O)). 

To examine the implications of the development thus far, and to set 
the stage for the introduction of acceleration transforms, we will now 
examine four examples of statistical kinetic models~ Three of these models 
will be simple statistical kinetic models. The fourth is the simplest member 
of a more general class of statistical kinetic models. 

Example  2.1. The  S i n g l e - S t e p  Process 

For addit ional  clarity, we adopt  the arrow notat ion  used in chemical  
kinetics. Thus 

A k, - , M (7) 



318 LuValle, Welsher, and Svoboda 

may be read as flaws move from state A to state M with transition intensity 
kl.  The arrow diagram (7) is the one representing the single-step process. 
The corresponding system of differential equations is 

(d/dt)(  A )o~(t) = - k l  ( A ) . ( t )  
(8) 

(d/dt) (M)~, ( t )  = k I ( A ) ~ ( t )  

In our general notation A = A 1, M =  A2, and kH =k12 = k~. The solution 
to (8) has the form 

( M ) ~ ( t )  = (A)o~(0){- 1 - e x p ( - k  I t)]  (9) 

Since (A)~(0)---no~ in this model, we find 

P(6 ~ M: t, co) = 1 - exp( - k  1 t) (10) 

Possible examples of degradation processes following this model include 
degradation processes limited by a pseudo-first-order chemical reaction ~2~ 
and processes limited by the effect of a homogeneous Poisson process, such 
as destruction of memory cells on an integrated circuit through the impact 
of high-energy cosmic rays. The latter is an example where step 1 of our 
model of degradation dominates rather than step 2. 

In this very simple example, it is interesting to note the tradeoffs that 
can occur between randomness induced by the degradation process and 
randomness induced by the initial conditions. With a pseudo-first-order 
chemical reaction, assuming the reaction involves more than 10 2~ flaws 
(molecules), randomness in the observed failure distribution is due entirely 
to differences in initial conditions. On the other hand, in a computer 
memory with no redundancy a single cell failure can ruin the system, so the 
randomness in this case comes entirely from the transition process. 

Example 2.2. A Simple Sequent ia l  Process 

This model is applicable when the process has two steps occurring in 
sequence which dominate the rate of the process over the observable range 
of applied stress. For  example, in a constant-relative-humidity environ- 
ment, the release of small amounts of corrosive impurities from a polymer 
matrix followed by the attack of those impurities on a copper conductor 
would be such a process. As long as the reactions are pseudo-first order 
this model should fit. Another possible model is that of a very delicate site 
requiring two "hits" by two types of molecules in sequence to cause failure. 
If the concentration is low in the environment of the site, the hits should 
follow independent Poisson distributions, leading to this sequential model. 
Cancer initiation and promotion might be modeled this way. 
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The arrow diagram for this model is 

A kl k2 , B ~ M (11)  

The system of differential equations corresponding to (11) is 

(d/dt)( A )o~(t) = - k l  ( A )~,(t) 

(d/dt)(B)o~(t) = kl (A)~o(t) - k2(B)o~(t) (12) 

(d/dt)(M)o,(t) = k2(B)~o(t) 

In the general notation A =A1, B = A  2, M =  A3, k I = kll =k12,  
k 2 = k22 = k23, and k13 = 0. The solution of (12) for (M)~o(t) is 

I ~ k2 e x p ( - k t t ) ]  (M)o~( t )=(A) ,~(O)  1+ exp( -kz t )  k 2 _ k  ~ 

+ (B),o(0)[1 - exp( -k2 t ) ]  (13) 

Thus, 

P ( f e  M: t, co)= P~o [1 +k2k~_lk exp( -k2 t )  

+ (1 - Po)[1 - exp( -k2 t ) ]  

k ~  7 
exp( - k, t ) |  

k2 - kl A 

(14) 

where 

Po~ = 
(A >,o(o) 

(A)o~(0) + (B)~(O) 

Latent defects present in a subpopulation could be incorporated into a 
model of this sort by assuming P~o = 1 for all units in the population except 
defective units. 

Example  2.3. A C o m p e t i n g  Processes M o d e l  

In this model the degradation process is assumed to be dominated by 
two single-step processes competing for the same resource. One of these 
processes leads to state M, and the other to a state from which M is 
inaccessible. For example, if the rate-limiting step in a process causing 
degradation in an electrical insulator is polymer degradation resulting from 
impurities in the polymer matrix, while a side reaction is consuming some 
of these impurities, and if the reactions are all pseudo-first-order reactions, 
then this mathematical model would be appropriate. Another situation in 

822/52/1-2-21 
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which this model might be appropriate involves the population dynamics 
of microbe cultures, in which the failure-causing process would be periodic 
flushing of the region in which the culture is growing with toxic chemicals, 
and the competing process is mutation causing changes in microbes that 
make them able to survive such flushing. In this case the experimental units 
would be populations of microbes within a location. 

The arrow diagram for this process is: 

M 
k, / / ~  

(15) 

The system of differential equations corresponding to (15) is 

(d/dt)(A)~(t) = - ( k  1 -~- k2)(A )~o(t) 

(d/dt ) (  B )o~(t) = k2(  A )~( t )  

(d/dt) (  M)o) ( t )  = k, ( A )~( t )  

(16) 

In the general notation, A=A1,  B=A2, M=A3,  kll =k t  +k2, k12=k2, 
k13 = kl, k23 = k22 = 0. The solution for (M)o~(t) is 

( kl ) {1 - e x p [ - ( k l  +k2) / ]}  (17) (M)~(t)  = (A)~o(0) 

Thus, 

P(6eM: t, co)- k------2--I { 1 - e x p [ - ( k ~ + k 2 ) t ] }  (18) 
kl + k2 

Remark 1. The right-hand sides of both (18) and (10) are 
functionally independent of the experimental unit o). This property will 
turn out to be useful when defining acceleration transforms. Unfortunately, 
(14), that is, P(6 e M: t, o)) for the sequential model cannot be expressed in 
this manner unless it is assumed that Po~ is constant across the co. This 
makes the expression and solution of the transform derived from (14) far 
more difficult than those derived from (10) or (18). 

The final example is one of the nonsimple models. We will call these 
models stochastically coupled because the transition behaviors of the flaws 
are coupled together stochastically. 
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Example 2.4. A Stochastically Coupled Model 

The arrow diagram for this model can be written 

A - k i  ~B 

C -  k2{B}(~(t) ;' M 

(19) 

The accompanying system of differential equations is 

(d/dt)( A )o)(t) = -k~ { A )o~(t) 

(d/dt)(B)o~(t) = k l (A  )~(t) 

(dldt)( C)~(t) = -k2{ B}o~(t)( C) ~(t) 

(d/dt)( M)~(t)  = k2{ B}o~(t)( C )o~(t)B 

(20) 

where (C)~(t )  is the expected number of flaws in C at time t in unit co, 
conditionally given Do(t) at time 0 in unit co and the history of {B}~. 
In terms of the general notation A=A~,  B=A2, C=A3, M=A4, 
kll(Do)(t)) = k12(D~(t)) = kl, k13(Do~(t)) = kz3(D~(t)) = k,4(Do~(t))= 
k24(Do~(t)) = 0, and k34(Do)(t)) = k2{B}~(t). 

This particular model might be appropriate in modeling failure caused 
by corrosion, when the corrosion rate is dependent on the generation of an 
ionic species in a separate hydrolysis reaction. We will assume for con- 
venience that (B)o~(0)=0. The formal solutions to (20) in (B)~(t)  and 
(M)~( t )  are 

(B)o~(t) = (A)o~(0)[ 1 - exp( - k  1 t)] (21) 

( M ) ~ ( t ) = ( C ) ~ ( O ) { 1 - e x p [ - k 2 f ~  {B},~(s)ds]} (22) 

Defining 

fl~(t) = [ { B } o ( t ) -  ( B)o(t)]/  ( A )~(0) 

one may expand Eq. (22): 

(M)~( t )  = (C)o (0 )  (1 - exp { - k z ( A ) , o ( O ) [ ( t  
1 - exp( - k l  t)'~ 

(23) 
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Define fl*~[1 - e x p ( - k  I I ) ]  = flo~(t). Then fl*~(t), 0 < t < 1, is the centered 
empirical distribution function of a sample of size (A)o~(0) drawn from a 
uniform distribution on (0, 1). Thus the t e r m  (A)~o(O)l/2fl*co(t), 0<  l <  1, 

can be approximated by a standard Brownian bridge. (4) Taking the expec- 
ted value of (23) conditionally given co (expectation is with respect to the 
conditional probability distribution placed on the flaws) gives the 
approximation 

{ [ ( 1 -- exp ( -k l  t)']] 
(M)o~(t)=(C)~(O) 1 - e x p  -k2(A)~)(O) t k~ ]J 

x exp k 2k~ (A)~(0)  a2(t) (24) 

where cr2(t) is 

21-1 - e x p ( - k l t ) - k l t e x p ( - k l t ) ]  - [1 - exp ( -k l  t)] 2 (25) 

which is just the variance of the random variable formed by integrating the 
standard Brownian bridge with respect to the weight function 1/(1 - s ) ,  the 
Jacobian for the change of variable, from 0 to 1 - e x p ( - k l  t). 

A simple derivation of (25), which was provided to the authors by 
V.J. Nair and C.L. Mallows simultaneouly during a discussion, is as 
follows. If fl(s) is a Brownian bridge on the interval 0, 1, then 

~2( t )=E ( 1 - s ) ( 1 - t )  

By exchanging expectation and integration this becomes 

fo' fo' min(s, t) - st ( l - s ) ( 1  t) d s d t = 2 [ u + l ~ 1 7 6  

substituting 1 -  exp( -k l  t) for u gives the result. 
If we wish to calculate the probability of failure in unit co by time t 

given only the initial conditions, we may still use (6), because conditionally 
given the sample path of {B}~, the sample paths of the flaws that can end 
in M are independently and identically distributed. 

Remark 2. In order for the process (19) to take noticeable time and 
to be noticeably different from (7), it is necessary that the terms 

1 - e x p ( - k l  t!) and 1 
k2(A)~(0 ) t kl e x p ( - k l t )  
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be bounded for t in the range of observable time. Thus, as {A)~(0) 
increases, k2 { t - [ 1 - exp( -- kl t)]/kl } must decrease. The first expression 
above for small k l t  has a Taylor expansion k2kl t 2. Since t is bounded by 
the sensitivity of the procedure we are using for measurement, we see that 
k2k~ must be proportional to {A)gl(0) [for simplicity {A)~(0) will be 
denoted as n for the rest of this argument]. 

Now, suppose k2~ n -p and k~ ~ n -(I-p). Then the exponent in the 
third exponential term in expression (24) is proportional to 
i"/2[(1-p) P)*n*ff2(t). But by Taylor expansion, for small kit,  o2(t)~k 3. 
Thus, the term in question is 

n2[(1 p)--p]~*iv l 3(1--p)=~ p 

For values of p ~< 0, the third exponent remains, because k 1 is small enough 
relative to {A)~(0) so that the effect of the change from state A to state B 
is noticeably stochastic. However, for p > 0 ,  as {A)~(0) gets large, 
{M)~(t)/{C)~o(O) or P(6~M: t 16eC:0), which corresponds to 
P(6 ~ M: t) in the simple statistical kinetic models, converges to 

l _ e x p I _ k 2 ( A ) ~ ( O ) ( t  1-exp(-klt))]tc,  /A (26) 

In the next section it will be shown that this change in the form of 
p(~5 ~ M: t [ 6 e C: 0) with change in the size of (A)~(0) actually causes a 
change in the amount of information that the macroscopic observable, via 
acceleration transforms, contains about the underlying process. Such a 
property does not hold with simple statistical kinetic models. 

3. A C C E L E R A T I O N  T R A N S F O R M S  

Acceleration transforms are built upon statistical kinetic models of 
degradation processes. Recall from the discussion following expressions (5) 
and (6) that the distribution of failure times at any given stress condition is 
a function not only of the system of equations, but also of the distribution 
of the unit specific parameters. Acceleration transforms allow us to separate 
the effects of the system of equations from the effects of unit-to-unit 
variation. This separation allows the development of data analytic 
estimation and model selection procedures that can be used directly to 
provide insights into the degradation process. 

The rest of this section will follow the same program as that used in 
the latter part of Section 2. First we derive a theoretical result concerning 
the structure of acceleration transforms constructed from simple statistical 
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kinetic models under some regularity conditions. Then we examine 
acceleration transforms derived from the simple statistical kinetic models 
developed in Section 2. Finally, we present and discuss two acceleration 
transforms derived from our stochastically coupled example. 

A key technical point in understanding the difference between this sec- 
tion and the last section is that calculations in the last section were perfor- 
med conditionally given a single experimental unit co. Calculations in this 
section are based on averaging over the population s of experimental 
units. 

The theorem is proven under the following assumptions: 

Assumption 1. Except for the transition intensities, which vary with 
applied stress, the degradation process occurring at all stress conditions 
can be described using the same simple statistical kinetic model. 

Assumption 2. (M)~ ,  the number of flaws in state M necessary to 
trigger failure in unit co, is independent of stress, as is no~. 

Assumption 3. The ratios (A~)o~(O)/no~ are all constant across (2 
and stress conditions. 

This last assumption is extremely restrictive, and we feel that it is 
probably unnecessary. 

To state the theorem, we need to define the concept of equivalent time. 
A time tl under stress condition s I corresponds to an equivalent time t 2 

under stress condition s2 only if the probability of failure before time tl 
under sl is the same as the probability of failure before the time t2 under s2. 
We assume throughout this section that applied stress does not vary with 
time. 

Theorem.  Under the above assumptions and those of Fact 2, the 
transformation taking time under one stress condition sl to the equivalent 
time at another stress condition s2, when such equivalent time exist (e.g., 
see the third example in this section), can be expressed as a function 
involving only the system of equations E, the transition intensities at each 
condition, and the ratios P i =  (Ai)~(O)/n~. 

Proof. Formulas (5) and (6) describe the probability of failure 
in unit co by time t. Fac t2  and assumption3 together imply that 
P(6 E M: t, co) is functionally independent of the experimental unit co. Thus, 
the probability of failure by time t in the population (2 can be written 

f~2{i=~ (~ir176176 dF((D) 
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where F(c0) is the bivariate probability distribution function of the pair 
((M)~o, no~) over Q. Assumption 2 implies that F(~o) will not change as 
stress changes, so the change in the failure distribution between sl and s2 is 
a monotone function of the change in the term P(6 ~ M: t, Sl) EP(A: t, s) is 
the probability that event A occurs at time t under stress conditions].  
Thus the transformation taking tl to l 2 satisfying P(6 s M: t2, s2) in the 
same transformation taking the time elapsed under stress condition sl to 
the equivalent time elapsed under stress condition s2. 

From Fact 2 and assumption 3 we can see that this transformation is 
simply the implicit function taking t 1 to t 2 defined by the equation 

i = l  j = l  

i =  1 , j=  1 

where Pi is as defined above, kij(s) is the transition intensity between state i 
and state j under stress condition s, and bji(s) is simply aj/~ with kij(s) sub- 
stituted for k o- and Pj substituted for (An)~(0). The fact that the implicit 
function defined in this way exists follows from the fact that each side of 
Eq. (27) is an increasing function of t. The fact that each side of (27) is 
nondecreasing follows immediately from the fact that M is absorbing. To 
see that each side is increasing, it is sufficient to recall that (d/dt)(M)~o(t) 
has the form 

(d/dt)(M),o(t)  = ~ kjm(A~)~(t) 

where each kim is nonnegative and at least o n e  kim is positive with the 
corresponding (Ai)~o(0) positive. 

From the proof of the above theorem and particularly Eq. (27), the 
following corollary is immediate. 

C o r o l l a r y .  For simple statistical kinetic models satisfying assump- 
tions 1-3, the corresponding acceleration transforms have precisely the 
same form as those derived from systems of deterministic differential 
equations assuming random initial conditions. 

Example 4, the stochastically coupled model, provides a counter- 
example of the conjecture that this result holds in general. 

To see what form these transforms can take, we now examine trans- 
forms defined by the examples given in Section 2. 
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Example 3.1. Accelerat ion Transform for a One-Step  Process 

From Eqs. (10) and (27) we see that the acceleration transform for the 
simple single-step process may be derived from 

1 - e x p [ - k l ( s l )  t l]  = 1 - exp[ -k l ( s2 ) t2 ]  

which reduces to 

tl = Ot2 (28) 

where O=kl(S2)/kl(sa). In the reliability field, this model is known as the 
accelerated life model, (5) where 0 is an acceleration factor. The main point 
to notice is that the k o will not be recoverable directly from the transform, 
even in this simple case. 

Remark 3. In the situation where the degradation process is limited 
by a chemical reaction, no)> 102~ the accelerated life model can be shown 
to hold for second- and higher order reactions as long as the reaction has 
only a single step. 

Example 3.2. Accelerat ion Transform for a Simple Sequent ia l  
Process 

From Eq. (14) we see that as long as assumption 3 holds, we can 
defined P = (A)~(O)/n,o so that the acceleration transform between stress 
conditions s~ and s 2 is implicitly defined by the equation 

kl(S2) k2(s2) } 
= P 1 + k2(s2)_kl(s2 ) exp[-k2(s2) t2]  k2(s2)_kl(S2 ) exp[ -k l ( s2 ) t2 ]  

+ (1 -- P) { 1 -- exp [ - k2(s2) t2 ] } (29) 

This example is of interest for several reasons. First, the result requires the 
explicit use of assumption 3, an assumption that may restrict the 
applicability of the result. The general transform for this particular model, 
where (A)o~(O)/no~ varies with ~o, can be written only as an implicit 
equation defined by integrals. Second, the function taking t2 to tl can only 
be defined implicitly; there is no explicit form for it. Finally, all of the ki are 
recoverable from the transform along with P. Thus, in this case the trans- 
form yields nearly complete information on the degradation process. 

+ (1 - P){1 - exp[ -k2(s~)t~] } 

k~(s~) exp[ --k2(sl) t l]  -- k2(sl) expl- - k l ( s l ) t l ] }  
P 1-F kz ( s~)_k l ( s l  ) k2 ( s l )_k l ( s l  ) 
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Example 3.3. Acceleration Transform for a Competing Process 
Model 

Equations (15) and (27) imply that the transform for this model can 
be derived from 

k,(sl)  

kl(S1) q- k2(s,) 
(1 - e x p {  - [k l ( s l )+  kz(sl)] tl }) 

k,(s~) 
kl(s2) + k2(s2) 

( 1 - e x p { - [ k l ( s z ) + k z ( s 2 ) ] t 2 } )  (30) 

which reduces to 

1 - e x p ( -  01 tl) = 02 [ 1 - e x p ( -  0 3/'2)] (31) 

where 

01 = kl(sl)  + k2(sl) 

02 = 
kl(s2)Ekl(sl) + k2($1)] 
[k~(s2) + k2(s2)] kl(S~) 

O~ = kl(S~) + k~(s~) 

An explicit function for the transform is defined by 

- l n{1  - 02[-1 - e x p ( -  03 t2)] } 
tl - (32) 

01 

Equation (31) illustrates a curious property shared by acceleration trans- 
forms of statistical kinetic models with more than one absorbing state. 
Notice that if 02 < 1, then there exist tl with no equivalent t2, and if 02 > 1, 
there exist t2 with no equivalent tl. In the former case, one would expect a 
lower proportion of units failing under condition s2 than under s~, and in 
the latter case, the reverse. This phenomenon of having a changing propor- 
tion of units fail with changing conditions is fairly common in accelerated 
life tests. This model allows for estimation in such a system, and also offers 
a testable interpretation. If the model is strictly true (no reversibility 
between states), then a large proportion of units surviving long exposure to 
low-stress conditions should take longer to fail when exposed to high stress 
than the equivalent tail of the distribution of new units. 



328 LuValle, Welsher, and Svoboda 

Example 3.4. Accelerat ion Transforms for the Stochast ical ly  
Coupled Model  

The assumption used to construct acceleration transforms from simple 
statistical kinetic models will not produce convenient forms for 
stochastically coupled models because of the inherent nonlinearity. For our 
example, it is possible to eliminate the functional dependence of 
P( 6 ~ M: t, co [ 6 E C: O, o~ ) on co only by assuming (A)o~(0) "~ (A)o ,  some 
constant independent of ~. We now examine the transforms that arise from 
this model under two situations. We first consider the case when (A),o(0) 
is only moderately large and formula (24) holds. Then we consider the case 
in which (A)~(0)  is very large and formula (26) holds. The surprising 
result is that the acceleration transform for the former case provides more 
information about the degradation process than the acceleration transform 
for the latter case, even though intuition indicates that the process in the 
former situation is inherently more random than in the latter. In this sec- 
tion we explicitly denote the dependence of a2(t) on S by writing a2(t, s). 

The transform for the first situation is the implicit relationship 
b e t w e e n  t I a n d  t 2 derived from 

l _ e x p [ _ k 2 ( s , ) ( A ~ o ( O ) ( t l  1 - e x p [ - k l ( s l ) t l ] ~  
kl(sl) / 

-k](s ' ) (A)~ a2(tl s l ) ]  
k~(sl)2 

= 1- -exp[ -kz ( s2 ) (A)o~(O)( t  2 1 - e x p [ - k l ( S 2 ) t 2 ] )  
k1($2) J 

k~(s2)(A ),~(0) a2(t2, s2)] 
kZ(s2)2 

which reduces to 

1--exp[--kx(sl) t l )]  + 0"2(/1 $1) 
k2(Sl) t l -  kl(sl) ~ ' 

= k2($2) 12 kl(S2) J KI{S2)Z 

Notice, given the definition of a2(t, s) provided by (25), that all four of the 
transition intensities can be recovered directly from the acceleration trans- 
form. This result can be contrasted to the situation in which (26) holds, for 
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example, when a system of deterministic differential equations is 
appropriate, in which case the transform can be reduced to the form 

( 1 - e x p ( - 0 3 t 2 ) )  1--exp(--Oltl)=02 t2 
tl 01 0 3 

where 01=kl(sl), 02=k2(s2)/k2(sl), and 03=k1(s2). More complex 
stochastically coupled models will result in several approximate transforms 
depending on the initial number of flaws in each state. In particular, we see 
that the corollary to the theorem given in this section must be generalized 
with care, and sometimes acceleration transforms can be used to help iden- 
tify the kinds of flaws causing degradation, by providing information on 
their abundance. 

4. D I S C U S S I O N  

Acceleration transforms were derived as new models of accelerated life 
test data (1) by assuming that some of the mathematical models normally 
used in elementary chemical kinetics were good approximations to 
degradation processes. In ref. 1 we demonstrated that: 

1. The commonly used accelerated life model could be derived as the 
acceleration transform for the simplest physical model. 

2. For one example where the accelerated life model did not fit well, 
a slightly more complex acceleration transform did fit well, and it 
both extrapolated better to field data than the acceleration factor 
model and generated valid qualitative predictions about the 
behavior of the material system. 

It was the second point that in large part motivated the work in this paper. 
Acceleration transforms, combined with statistical methods of selecting and 
estimating models from data, provide a tool for making inductions about 
the processes occurring in a material while it is degrading. Ignoring for the 
moment the problems introduced by statistical estimation (6) and assuming 
that the acceleration transform fitting the data is chosen correctly, then, in 
order for induction to proceed intelligently, it is necessary to understand 
the broad range of possible models corresponding to a single acceleration 
transform. While the work presented here does not completely cover that 
range, it does expand the range previously covered. The postulates were 
motivated by the desire to approximate such diverse phenomena as nth- 
order chemical reactions [which can be done through appropriate 
definition of ku(Do~(t)) ] and crack initiation and propagation, in which the 
distribution of energy throughout the system changes as soon as a crack 
begins to form. 
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The main contribution of this paper is thus the theorem in Section 3 
and its corollary, and the postulates and assumptions leading to it. These 
provide a set of sufficient conditions, stated in terms of physical properties 
of the material systems and their environments, for acceleration transforms 
to provide a valid explanation of the way failure distributions change as 
stress level changes. These sufficient conditions are broad enough so that 
the scientist/data analyst knowing them will understand how much and 
how little the use of acceleration transforms has permitted understanding of 
the processes occurring in the material system being studied. Proper fitting 
of the 0 terms as functions of the environment may then supply further 
information. 

In conclusion, this paper supplies a self-consistent portion of a theory 
on which to base the study of degradation phenomena using accelerated 
life testing. The postulates and assumptions are too restrictive to provide a 
theory for all degradation phenomena, but the success of the accelerated 
life model in combination with the Arrhenius model of temperature depen- 
dence, and our success with the one example, (~'6) indicate that there are 
material systems that can be well approximated by these postulates. 

The work done here only represents a beginning. Example 4 in Sec- 
tions 2 and 3 demonstrates that there are several phenomena that may be 
described through acceleration transforms and statistical kinetics that are 
not covered by Theorem 1. Modifying A3 will allow for distinct sub- 
populations. More work must also be done on experiment design and data 
analytic estimation procedures and on developing both physical and data 
analytic strategies that fully take advantage of the link these models 
provide between the physical analysis of degradation processes and the 
statistical analysis of accelerated life test data. Also, the extension of 
statistical kinetics to allow reversible processes and the use of a quantum 
mechanical description of the probability mechanism might greatly expand 
its applicability. 
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